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CATALYTIC TRIMERIZATION OF AROMATIC NITRILES

FOR SYNTHESIS OF POLYIMIDE MATRIX RESINS

by Li-Chen Hsu

Lewis Research Center

SYNOPSIS

Aromatic nitriles may be trimerized at moderate temperature and

pressure with p-toluenesulfonic acid as catalyst. Studies were conducted

to establish the effect of the reaction temperature, pressure, time, and

catalyst concentration on yield of the trimerized product. Trimerization

studies were also conducted to establish the effect of substituting electron

donating or withdrawing groups on benzonitrile. Preliminary results of

using the catalytic trimerization approach to prepare s-triazine cross-linked

polyimide/graphite fiber composites are presented.

INTRODUCTION

High temperature resin/fiber composites have the potential of meeting

the performance requirements for many advanced aerospace structures. The

composites need to exhibit retention of mechanical properties during contin-

uous use at 3160 C (6000 F) or above (1). Among the high temperature resins,
polyimides occupy a preeminent position. Aromatic polyimides (PiPs) exhib-

it thermal stability in excess of 5000 C (9320 F) as determined by thermal

gravimetric analysis (2). However processing difficulties have limited their

use as matrices in resin/fiber composites. Various approaches have been

used to solve the processability problem of polyimides. Lubowitz (3) and

Burns et. al. (4) developed a new system of processable addition-type (A-type)

PI's by end-capping imide oligomers with norbornenyl groups. After removal

of the solvent, the norbornene-terminated imide olfgomers are polymerized
through the double bonds without evolution of byproducts. Serafini et. al.

(5) and Delvigs et. al. (6) developed an improved processing technique for

A-type P's called the in situ polymerization of monomeric reactants (PMR).
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Although the in situ PMR approach does provide void free A-type PI com-

posites with good property retention at 3160 C (6000 F), the alicyclic ring

structure derived from the norbornene groups does appear to limit the

thermo-oxidative stability (TOS) of A-type PI's (7). To achieve A-type PIs

with improved TOS at 3160 C (6000 F) or above, our approach was to re-

place the norbornenyl groups with aromatic nitriles. Trimerization of

aromatic nitrile-terminated imide oligomers should lead to new polyimides

containing triaryl-s-triazine rings. Triaryl-s-triazine ring is known to

exhibit good thermal stability (8).

The purpose of the present investigation was to study the trimerization

of aromatic nitriles under the conventional resin/fiber composite fabrication

conditions using p-toluenesulfonic acid as a catalyst. Trimerization param-

eters investigated included reaction temperature, pressure, time, and

concentration of catalyst. The influence of the nature of aromatic nitriles

on trimerization was also studied. Also presented are preliminary results

on the use of the catalytic trimerization of the nitrile-terminated imide

oligomers to fabricate graphite fiber reinforced composites.

EXPERIMENTAL PROCEDURE

Materials

All of the aromatic nitriles except p-cyanophthalanil used in this study

were purchased from commercial sources and used as received. The

p-cyanophthalanil was synthesized by a method similar to that used for

synthesizing N-phthalyl-L--phenylalanine (9) except that p-amninobensoni-

trile was used instead of L-phenylalanine.

Catalytic Trimerization

About 0. 01 mole of the aromatic nitrile together with 0. 5 to 5.0 mole

percent of the p-toluenesulfonic acid (PTSA)'catalystwas introduced into a

45-milliliter stainless steel pressure vessel. The vessel was flushed with

nitrogen gas and the initial pressure in the vessel was varied from 0 to 2. 76

MN/m 2 (0 to 400 psi). The vessel was then heated to temperatures in the

range of 100 to 3160 C. The selected temperature was maintained for 24 to

90 hours. The PTSA catalyst and unreacted nitrile were then removed from
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the product by washing with water followed by distillation under reduced

pressure. The product was then recrystallized from xylene or glacial

acetic acid. Melting point and infrared spectrum were determined for

identification purposes.

RESULTS AND DISCUSSION

Trimerization Study

Bengelsdorf (10) reported that aromatic nitriles could be trimerized

in the absence of catalysts at temperatures in the range of 3500 to 5000 C

and at pressures which ranged from 3. 55x10 3 to 5. 06x10 3 MN/m2 (35, 000 to

50, 000 atmospheres). Cairns et al. (11) used various alcohols as catalysts

and were able to effect trimerization of aromatic nitriles at 600 to 1500 C

and 0. 3x103 MN/m2 (above 3000 atmospheres). Kunz et al. (-12) eimployed

chlorosulfonic acid to trimerize aromatic nitriles at temperatures in the

range of -100 to 30 0 C and at atmospheric pressure. These latter workers

used an excess of chlorosulfonic acid which apparently served as both the

solvent and catalyst. Because of the high pressures or the nature and quan-

tity of catalyst employed none of the methods described above are suitable

for the synthesis of high temperature resistant s-triazine cross-linked polyi-

mide matrix resins for fiber reinforced composites.

The aromatic nitrile and catalyst selected for this study were benzoni-

trile and PTSA, respectively. Studies were conducted to establish the

effect of reaction conditions on yield of trimerized product. Figure 1

shows the effect of varying the reaction temperature on yield between 1000

and 2900 C at a constant PTSA catalyst concentration of 5 mole percent,

pressure in the range of 4. 14 to 5. 17 MN/m2 (600 to 750 psi), and:for a con-

stant reaction time of 66 hours. It can be seen from the figure that there
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was no yield at 1000 C and the yield nearly doubled on going from 2320 to

2900 C. Because of practical processing considerations for the fabrication

of fiber reinforced composites, higher temperatures were not investigated.

The effect of reaction pressures in the range of 0.2 to 5.17 MN/m 2 (30 to

750 psi) on yield are shown in figure 2. The data shown in this figure were

obtained for reactions 'conducted with a PTSA concentration of 5 mole per-

cent at 2320 C for 66 hours. The figure shows that the use of higher pres-

sures resulted in higher yields. Hereto, practical processing consideration

limited the highest pressure studied to 5. 17 MN/m 2 (750 psi). Figure 3

shows the effect of reaction time on yield for reactions conducted with

5 mole percent PTSA at 2320 C (4500 F) and 5. 17 MN/m 2 (750 psi). It can

be seen in the figure that the yield upon increasing reaction time from 24 to

66 hours underwent slightly more than a two fold increase. Figure 4 which

shows effect of catalyst concentration on yield shows that at 2320 C (4500 F)

and 5. 17 MN/m 2 (750 psi) and 66 hours the yield increased from 5% to 17%

for a ten fold increase in catalyst concentration.

The results of these trimerization parameter studies indicated that

useful levels of trimerized product (cross-links) could be anticipated from

the use of this catalytic trimerization approach in fabricating resin/fiber

composites. Two additional points need to be made with respect to the yield

of trimerized product. First, the yield of trimerized product (cross-links)

in an actual resin/fiber composite might be increased by post-curing at

elevated temperatures. And secondly, extensive cross-linking may not be

necessary for improved composite properties and indeed may be deleterious

to certain composite mechanical properties.

Nature of Aromatic Nitriles

The experimental results on the influence of ring substituents on the

ease of trimerizing benzonitriles are summarized in Table I. It can be

seen that the benzonitriles bearing electron withdrawing ring substituents

such as carboxyl and nitro groups are more susceptible to trimerization

than those bearing electron donating substituents such as methyl and methoxy

groups. The lower yield of trimerized product from the o-nitrobenzonitrile

compared to p-nitrobenzonitrile can be accounted for by steric effects. The

very high yield of trimerized product from the p-cyanobenzoic acid might
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have resulted from a reaction in which the p-cyanobenzoic acid itself served

as a co-catalyst.

For the synthesis of processable polyimides, our results suggested the

use of 4-cyanophthalic anhydride as the end-capping reagent. The 4-cyanoph-

thalic anhydride or its esters might be preferrable because the electron with-

drawing carbonyl groups would be directly attached to the aromatic ring con-

taining the nitrile to be trimerized. However, because of the commercial

availability of p-aminobenzonitrile, it was selected as the end-capping reagent

for preliminary studies.

Trimerization of p-Cyanophthalanil

p-Cyanophthalanil was synthesized as the model compound to study the

effectiveness of PTSA in promoting trimerization of a chemical structure

which would be found in the polyimide precursors.

p-Cyanophthalanil was prepared from commercially available p-amino-

benzonitrile and phthalic anhydride. The white crystalline powder has a

melting point of 1890 C (lit. 1870 C, ref. 16'). Its infrared spectrum showed-1 -
a nitrile band at 2240 cm- , imide bands at 1795, 1755, 1735, and 1380 cm -1

and phenyl ring bands at 1610 and 1520 cm -1 respectively (fig. 5(a)).

Catalytic trimerization of p-cyanophthalanil with 5 mole percent p-toluene-

sulfonic acid at 250-3000 C and 4. 97 to 5. 52 MN/m2 (720-800 psi) for 90 hours

gave a 97% yield product, with a m. p. > 3400 C. The infrared spectrum-1
showed the disappearance of the nitrile band at 2240 cm-1 and the broadening

of the s-triazine bands at 1520 and 1380 cm -1 (fig. 5(b)). Further identifi-

cation of the formation of the s-triazine was done by refluxing the trimerized

product with a10% NaOH solution for 4 hours. The infrared spectrum,

of the insoluable hydrolysis product showed that those imide bands at 1795,
1755, 1735, and 1380 cm -1 had nearly disappeared (or greatly weakened).

The characteristic s-triazine band at 1520 cm - 1 was not effected (fig. 5(c)).
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Trimerization of Terephthalonitrile

Since terephthalonitrile has two nitrile groups and the nitrile group

itself is also electron withdrawing, catalytic trimerization of terephthal-

onitrile should proceed readily and result in a polymeric product expected

to exhibit good thermal stability. The experimental results confirmed this

prediction: Catalytic trimerization of terephthalonitrile with 5 mole percent

of PTSA catalyst at 2320 C and 5. 17 MN/m2 (750 psi) for 48 hours gave a

product (99. 5%'yield) with a melting point > 3400 (6440 F). The infrared

spectrum of terephthalonitrile showed a very strong nitrile band at 2230 cm

and a sharp aromatic ring band at 1500 cm -1 (fig. 6(a)). The infrared spectrum

of the trimerized product showed strong and broad characteristic s-triazine

ring-bands at 1525 and 1370 cm -1 with a residual nitrile band of medium

strength at 2230 cm -1 (fig. 6(b)). Thermal gravimetric analysis (fig. 7)

showed that the weight losses of terephthalonitrile polymer were about 7%

after heating to 3160 C (6000 F) and 18% after heating to 5380 C (10000 F)

respectively. Anderson and Holovka (17) reported weight losses of about

25% after heating to 3160 (6000 F) and 75% after heating to 5380 C (10000 F)

respectively from the terephthalonitrile polymer which they obtained by

treating terephthalontrile with chlorosulfonic acid at 00 C. This greater

thermal oxidative stability of the trimerized product using PTSA as the cata-

lyst may be due to having achieved a higher cross-link density during reaction

at 2320 C (4500 F) and 5.17 MN/m2 (750 psi).

Polyimide/Graphite Fiber Reinforced Composite

Since aromatic nitrile-terminated imide oligomers are similar in

nature as p-cyanophthalanil and possess the same' functionality as' terephthal-

onitrile, they should be able to trimerize and form the s-triazine ring con-

taining polymers under the similar reaction conditions.

Preliminary work for the synthesis of nitrile terminated polyimides was

carried out by using p-aminobenzonitrile, 4, 4' -methylenedianiline,, 3, 31,

4,4' -benzophenonetetracarboxylic dianhydride and methanol with 2.5 mole

percent of PTSA catalyst. The stoichiometry of the monomeric reactants

was adjusted to yield an in situ prepolymer having an average formulated
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molecular weight of 1500. Composite fabrication and testing were performed

essentially according to the method used in reference 5. The results from

some preliminary composite fabrication and characterization studies indi-

cate that the trimerization technique by employing PTSA catalyst provides

high performance composites.

Table II shows the interlaminar shear strength and flexural strength of

the triaryl-s-triazine cross-linked PI/HMS graphite composites at room tem-

perature and 3160 C with and without post curing. The data clearly indicate

that the HMS graphite fiber reinforced composite prepared from a nitrite ter-

minated PI exhibited very good retention of flexural strength during short time

exposure in air at 3160 C. More inportant, the data also indicate that both

the interlaminar shear strength and flexural strength of the composites im-

proved after a 16 hour post cure at 3160 C. Apparently this resulted from

an increase in triaryl-s-triazine rings during post cure at 3160 C.

CONCLUSIONS

The results of this investigation lead to the following conclusions:

1. Aromatic nitriles can be trimerized in the temperature range of

2000 to 3160 C (3920 to 6000 F) and pressure range of 1. 38 to 5. 52

MN/m 2 (200 to 800 psi) with p-toluenesulfonic acid as catalyst.

2. Benzonitriles bearing electron withdrawing ring substituents were

found more susceptible to trimerization than those bearing electron do-

nating ring substituents.

3. Polyimide matrix resins containing s-triazine cross-links can be

easily prepared using the aromatic nitrile end-capping approach and tri-

merization with a p-toluenesulfonic acid catalyst.
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TABLE I. - CATALYTIC TRIMERIZATION* OF

SUBSTITUTED BENZONITRILES

Aromatic Nitrile M. P. 0 C Trimerized Product

Percent yield M. P. OC (Value in Lit.)

13
p-Tolunitrile 26-28 5.0 > 340 (278-913)

Anisonitrile 55-56 6.0 > 340 (217 and 224 )

Benzonitrile -14 14.0 232-235 (23213)

o-Nitrobenzonitrile 102-106 37. 8 > 34014

p-Nitrobenzonitrile 146-149 52.3 > 340 (> 3601)

p-Cyanobenzoic acid 220-222 75.0 > 340 (374-515)

* Reaction conducted at 2320 C, and 600 to 750 psi., with 5 mole percent

of PTSA catalyst for 48 hours.



TABLE II. - MECHANICAL PROPERTIES OF TRIARYL-S-TRIAZINE

CROSS-LINKED PI/HMS FIBER COMPOSITESa

Speci- Interlaminar shear strength, psi Flexural strength, psi
men

Room 6000 F Room 6000 F
temper- temper-

ature No post Post cure ature No post Post cure
cure (16 hr 6000 F) cure (16 hr 6000 F)

1 8 370 4620 7500 155 000 148 200 167 500
2 10 130 4520 6800 130 200 145 700 157 500

aResin/fiber ~40/60 by weight.
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